Detecting Laughter and Filled Pauses Using Syllable-based Features

Guozhen An, David Guy Brizan, Andrew Rosenberg
CUNY Graduate Center / Queens College (CUNY)

2013-08-26

Interspeech 2013
Lyon, France
Problem: Frame-based decisions → frame-based errors

- Baseline classifier makes frame-level errors
 - Many times surrounding frames’ labels contradict classifier decisions
 - Often probability of predicted label is close to some other class

| 'S1393.wav', 188, garbage, 0.700, 0.065, 0.235 |
| 'S1393.wav', 188, garbage, 0.575, 0.093, 0.332 |
| 'S1393.wav', 190, garbage, 0.474, 0.126, 0.400 |
| 'S1393.wav', 191, filler, 0.425, 0.113, 0.462 |
| 'S1393.wav', 192, garbage, 0.478, 0.091, 0.430 |
| 'S1393.wav', 193, garbage, 0.534, 0.080, 0.385 |
| 'S1393.wav', 194, garbage, 0.692, 0.069, 0.239 |
| 'S1393.wav', 195, garbage, 0.783, 0.054, 0.163 |
| 'S1393.wav', 196, garbage, 0.792, 0.072, 0.136 |
Experiments

- Rescore within a region
 - Change frame prediction where appropriate
 - Consider surrounding frame labels

- Add prosodic features
 - With rescoring
 - Without rescoring
AuToBI for syllable Regions

- Used for automatic detection of ToBI-labeled prosodic events:
 - Pitch Accent Detection
 - Pitch Accent Classification
 - Phrase Detection
 - Phrase Ending Classification

- Syllable Regions
 - Produced to generate Pitch Accent Classification
 - Generates Region hypotheses without input word segmentation (new feature)
Rescoring within a Region

● Determine the Region’s label:
 ○ *Majority Class*
 ■ If the total number of frames in the Region exceeds a certain fraction of all frames (0.9 for Garbage, 0.7 otherwise)
 ○ *Average Segment*
 ■ If no *Majority Class* - OR - if unweighted average for the Region exceeds threshold (0.9 for Garbage / 0.7 otherwise)

● Determine whether to rescore a Frame:
 ○ *Label Exchange*
 ■ Change the frame’s label if below a prediction threshold (0.9 for Garbage, 0.7 otherwise)
Results (Test Set) Rescoring

83.25% 84.01%
+0.76%
Adding Prosodic Features

- Added 28 AuToBI-based features to baseline for previous, current, subsequent Region:
 - Region sequence in file
 - Duration of Region
 - Range Normalized Intensity & its delta
 - Z-score Normalized Pitch (log Hz) and its delta
 - Mean Spectral Tilt and its delta
 - Length of preceding and following pauses

- Tested additional features with & without rescoring
 - Rescoring may be superfluous with new features
Results (Test Set) + Prosody

<table>
<thead>
<tr>
<th>Setting</th>
<th>Laughter</th>
<th>Filler</th>
<th>Rescoring + Prosody</th>
<th>Prosody</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>83.25%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rescoring</td>
<td>84.01%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rescoring + Prosody</td>
<td>84.31%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prosody</td>
<td>84.85%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

+0.76% +1.06% +1.60%
If we had more time, we would

- Contrast our approach with well-established algorithms
 - Viterbi for rescoring

- Model laughter, filler & garbage (each) as heterogeneous phenomena
 - There is no stereotypical *Laughter*
 - Different languages express *Filler* (filled pauses) differently
Thanks

The Speech Lab at Queens College
http://speech.cs.qc.cuny.edu/

Guozhen An (gan@gc.cuny.edu)
David Guy Brizan (dbrizan@gc.cuny.edu)
Andrew Rosenberg (andrew@cs.qc.cuny.edu)

Questions?
Results (Test Set)

<table>
<thead>
<tr>
<th>Config</th>
<th>Laughter</th>
<th>Filler</th>
<th>UAAUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>82.90%</td>
<td>83.60%</td>
<td>83.25%</td>
</tr>
<tr>
<td>Rescoring</td>
<td>83.80%</td>
<td>84.22%</td>
<td>84.01%</td>
</tr>
<tr>
<td></td>
<td>+0.9%</td>
<td>+0.62%</td>
<td>+0.76%</td>
</tr>
<tr>
<td>Rescoring + Prosody</td>
<td>84.05%</td>
<td>84.58%</td>
<td>84.31%</td>
</tr>
<tr>
<td></td>
<td>+1.15%</td>
<td>+0.98%</td>
<td>+1.06%</td>
</tr>
<tr>
<td>Prosody</td>
<td>84.64%</td>
<td>85.06%</td>
<td>84.85%</td>
</tr>
<tr>
<td></td>
<td>+1.74%</td>
<td>+1.46%</td>
<td>+1.6%</td>
</tr>
</tbody>
</table>